
Accelerating GCN Inference on Small Graphs

Hanwen Dai, Changbo Chen, Yuxuan Song

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences

Euro-Par Workshop: HiPES 2024
August 26, 2024

C. Chen (CIGIT) Accelerating GCN 1 / 26

Outline

1 Background

2 Main contribution

3 Experiments

4 Conclusion and future work

C. Chen (CIGIT) Accelerating GCN 2 / 26

Outline

1 Background

2 Main contribution

3 Experiments

4 Conclusion and future work

C. Chen (CIGIT) Accelerating GCN 3 / 26

Graph Neural Network (GNN)

Many applications [Zhang, 2019, Khemani et al., 2024]
A huge graph: social networks, knowledge representations.
A large number of (small) graphs: molecular graphs in bioinformatics.

Many variants
Graph convolutional network (GCN)and [Kipf and Welling, 2017]
Graph sample and aggregate network (GraphSAGE) [Hamilton et al.,
2017]
Graph attention network (GAT) [Velivcković et al., 2018]

Graph Convolutional Network (GCN)

H(ℓ+1) = σ

(
D̃− 1

2 ÃD̃− 1
2H(ℓ)W(ℓ) + b(ℓ)

)
, ℓ = 0, 1, · · · ,L − 1, (1)

C. Chen (CIGIT) Accelerating GCN 4 / 26

Related work

Related work on accelerating GNN/GCN inference
Survey papers: [Liu et al., 2022, Abadal et al., 2022].
Algorithm:

• Reducing the feature dimension [Yik et al., 2022].
• Sampling multi-hop neighbours [Zhang et al., 2023a].
• Model reduction [Tan et al., 2023].

Implementation:
• Software implementation: DGL, PyG, DGI [Yin et al., 2023].
• Hardware implementation: [Zhang et al., 2023b].

Related work on accelerating batched matrix multiplication
Dimensions are the same in a batch: batch_matmul in TVM.
Variable dimensions in a batch: MAGMA, Intel MKL.
Our previous work on accelerating batched matrix multiplication for
variable small sizes based on TVM [Dai and Chen, 2024].

C. Chen (CIGIT) Accelerating GCN 5 / 26

Deep Learning Compiler: TVM [Chen et al., 2018]

Work flow of TVM

Supports in TVM for accelerating GCN
TVM has introduced sparse tensors to support the inference of GCN.
Internally, sparse tensors will be converted into dense ones.
Currently TVM only supports inference on a single graph.
C. Chen (CIGIT) Accelerating GCN 6 / 26

Outline

1 Background

2 Main contribution

3 Experiments

4 Conclusion and future work

C. Chen (CIGIT) Accelerating GCN 7 / 26

Main contribution and the optimizations deployed
We replace (single large) sparse-dense matrix multiplication with
(batched small) ones in GCN.
We rearrange the order of basic operators in the forward computation
of GCN to avoid redundant computation.
We implement these optimizations in TVM to provide efficient GCN
inference for batched graphs.

A series of optimization techniques deployed
Replacing sparse operators with dense ones in both DGL and TVM.
Reordering basic operators to avoid redundant computations in both
DGL and TVM.
Applying associative law to reduce number of arithmetic operations in
TVM.
Providing batched dense matrix multiplications targeting for small
matrices in both DGL and TVM.
Utilizing TVM complier optimization (mainly constant folding).
C. Chen (CIGIT) Accelerating GCN 8 / 26

The different stages of GCN inference

The preprocessing part includes loading input graph data and
preparing adjacency matrix.
The computing part includes normalization of adjacency matrix,
convolution and activation.
After getting output of the last layer, we apply postprocessing to
obtain embedding or classification result of node, edge or graph.
C. Chen (CIGIT) Accelerating GCN 9 / 26

Replacing sparse-dense matrix multiplication by dense ones

The intuition
Cons: This optimization increases the number of arithmetic
operations.
Pros: Fully leverages GEMM optimizations, such as cache reuse and
vectorization.
For small matrices, overhead can be compensated by benefits.

Implementation details
For DGL, we propose DGL*-Dense by uniformly adopting numpy.dot
to replace torch.sparse.mm.
For TVM, we propose TVM*-Dense for employing relay.nn.dense
instead of relay.nn.sparse_dense.

C. Chen (CIGIT) Accelerating GCN 10 / 26

Hadamard product

Defined for matrices of the same size
H = A ⊙ B, defined as Hij = Aij ∗ Bi,j.

Accelerating product of a diagonal matrix with a dense one
Dm×m is a diagonal matrix with Dii = di.
We want to compute D · A efficiently.
Let e = [1, ..., 1]t and d = [d1, . . . , dm]t.
D · A can be computed as: (D · e · et)⊙ A.
D · e · et = [d, . . . , d].
By D ◦ A, we mean compute D · A in a Hadamard product way.
Similarly, we have

• A · D can be computed as: A ⊙ (e · et · D).
• By A ◦ D, we mean compute A · D in a Hadamard product way.

C. Chen (CIGIT) Accelerating GCN 11 / 26

Reordering basic operators (I): Basic idea

DGL*-Dense/TVM*-Dense: = ((/ /)) +)

/ /

DGL*-Sparse = (/ ((/)) +)

A’

/ /

/ /

Figure: Basic operators reordering in a two-Layer GCN

Pros: Efficiently compute product of diagonal degree matrix D̃− 1
2 by

another dense matrix by utilizing Hadamard product operation.
Cons: Redundant computation of D̃− 1

2 ÃD̃− 1
2 when #conv > 1.

C. Chen (CIGIT) Accelerating GCN 12 / 26

Reordering basic operators (II): Some extra details

Complexity analysis
Size of the adjacency matrix A: m ∗ m.
Size of the feature matrix H: m ∗ pi.
Size of the weight matrix W: pi ∗ qi.
The saved number of floating-point operations is
m
∑n

i=1 (pi + qi)− 2m2.

Implementation of Conv layer from TVM

H(ℓ+1) = σ

D̃− 1
2 ◦

(
W(ℓ)T

(
D̃− 1

2 ◦H(ℓ)

)T
ÃT
)T

+ b(ℓ)
 (2)

This is because implementation of matrix multiplication in Relay layer of
TVM only accommodates C = ABT through operator relay.nn.dense.

C. Chen (CIGIT) Accelerating GCN 13 / 26

Exploiting the associative law of matrix multiplication

Recall the core computation of GCN

Am×m ∗Hm×p ∗Wp×q (3)

Simple complexity analysis
Order (A ∗H) ∗W incurs 2(m2p + mpq) FLOPS.
Order A ∗ (H ∗W) incurs 2(m2q + mpq) FLOPS.

Implementation details
Depending on values of p and q, one can choose computing order
incurring the smallest number of FLOPS.
DGL utilizes this feature.
Our implementation DGL* and TVM* also utilizes this feature.

C. Chen (CIGIT) Accelerating GCN 14 / 26

The other two optimizations utilizing TVM

Batched matrix multiplication for TVM
Treat sparse matrices as dense ones.
Utilize batch_matmul in TVM for batched dense matrix
multiplication of the same size.
TVM*-B groups matrices of the same size into one group.
TVM*-M firstly sorts matrices by their dimensions and performs
zero-padding on adjacency matrices to match the maximum
dimension of adjacency matrices in the batch (default size: 32).

TVM compiler level optimization with constant folding
Constant folding: identifies a constant expression and replace it with
a constant value at compile time.
The adjacency matrices, degree vectors, and weight matrices in GCN
are stored in the relay layer of TVM as constant expressions.

C. Chen (CIGIT) Accelerating GCN 15 / 26

Outline

1 Background

2 Main contribution

3 Experiments

4 Conclusion and future work

C. Chen (CIGIT) Accelerating GCN 16 / 26

Information of selected datasets and experimental environment

Table: Information of selected datasets.

Name #Graphs #Nodesmax #Classes Application Accuracy
AIDS 2000 95 2 small molecules 98.35%
BZR 405 57 2 small molecules 80.99%
COX2 467 56 2 small molecules 78.16%
DHFR 756 71 2 small molecules 71.29%
Cuneiform 267 36 30 computer vision 70.41%
Letter-low 2250 8 15 computer vision 84.13%
Synthie 400 99 4 Synthetic 93.00%

Seven datasets from TUDataset Morris et al. [2020] are selected for
performance evaluation.
GCNs are pretrained to obtain reasonable accuracies
(training/testing=4/1).
Intel i7-9700F @ 3.0 GHz, 16 GB DDR4-2666.
LLVM 13.0.0, g++ 9.4.0, TVM 0.12.0 and DGL 2.1.
C. Chen (CIGIT) Accelerating GCN 17 / 26

Different implementations to compare
DGL: Current implementation of GCN inference in DGL.
DGL*-reimplementSparse: A re-implementation of DGL, featuring a
rewritten convolution implementation in the PyTorch platform.
DGL*-Sparse: essentially DGL*-reimplementSparse but only timing
the most compute-intensive four parts for fair comparision.
DGL*-DirectDense: A direct translation of DGL-sparse with sparse
matrix multiplications replaced by dense ones.
DGL*-Dense: Re-arranging the order of dense operations.
TVM: Current implementation of TVM on GCN inference for single
graph.
TVM*-Dense: Replacing the sparse tensor operations by dense ones
and re-arranging the order of dense operations.
TVM*-B: Support batch processing on TVM through combining
matrices in same dimension, which is not affected by batch size.
TVM*-M: Support batch processing on TVM through padding to the
maximum dimension in a batch.
C. Chen (CIGIT) Accelerating GCN 18 / 26

The common computations of all implementations

The four parts

Hadamard product (H-product): A∗ = D̃− 1
2 ◦ Ã ◦ D̃− 1

2 .
Conv: A∗H(ℓ)W(ℓ) + b(ℓ).

Method H-product (ms) Conv1 (ms) ReLu (ms) Conv2 (ms)
DGL*-Sparse 42.9 93.4 11.3 73.5
DGL*-DirectDense 42.1 70.0 12.2 48.0
DGL*-Dense 18.0 60.7 12.3 40.1

The table reports the timings of three implementations in DGL on
AIDS dataset.
Replacing the sparse operators by dense ones brings speedup.
Re-ordering the computation also brings speedup.

C. Chen (CIGIT) Accelerating GCN 19 / 26

End-to-end evaluation

DGL*-reimplementSparse has similar performance with original DGL.
The difference with DGL*-Sparse shows the overhead of preprocessing
and postprocessing part are high.
C. Chen (CIGIT) Accelerating GCN 20 / 26

Performance of relevant implementations on handling graphs one by
one

DGL*-Dense achieves 1.3× on average over DGL*-Sparse.
TVM*-Dense achieves an average speedup of 1.1× over TVM.
TVM achieves on average 20× speedup over DGL*-Dense.
C. Chen (CIGIT) Accelerating GCN 21 / 26

Performance of relevant implementations on handling graphs in batch

Batch size: 32.
TVM*-B achieves an average speedup of 475.6× over batched
DGL*-Sparse.
TVM*-M achieves an average speedup of 170.4× over batched
DGL*-Sparse.
C. Chen (CIGIT) Accelerating GCN 22 / 26

Why do the performance of TVM*-B and TVM*-M vary with data?

Figure: Comparison of matrix size distribution on different datasets.

The dimensions have a wide range for the datasets BZR and COX2.
The dimensions are highly centralized for Cuneiform and Letter-low.
C. Chen (CIGIT) Accelerating GCN 23 / 26

Performance of batch processing on AIDS as the batch size increases

TVM*-B ignores the given batch size and merges matrices of the
same dimensions into a batch.
C. Chen (CIGIT) Accelerating GCN 24 / 26

Outline

1 Background

2 Main contribution

3 Experiments

4 Conclusion and future work

C. Chen (CIGIT) Accelerating GCN 25 / 26

Conclusion and future work

Targeting on small size graphs, we propose implementing GCN
inference fully relying on dense operators.
Several optimization strategies were proposed, such as replacing single
sparse matrix multiplication by efficient batched dense matrix
multiplication with TVM support and rearranging the order of basic
operators.
Experiments show that our method outperforms DGL and TVM on
small graph datasets from real applications.

Future work
Reducing the overhead of components other than the “most
compute-intensive operations”.
Migrate the acceleration techniques to GNNs other than GCNs.

C. Chen (CIGIT) Accelerating GCN 26 / 26

Jiawei Zhang. Graph neural networks for small graph and giant network
representation learning: An overview. arXiv preprint arXiv:1908.00187,
2019.

Bharti Khemani, Shruti Patil, Ketan Kotecha, and Sudeep Tanwar. A
review of graph neural networks: concepts, architectures, techniques,
challenges, datasets, applications, and future directions. Journal of Big
Data, 11(1):18, 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. In 5th International Conference on
Learning Representations, ICLR 2017. OpenReview.net, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In Advances in Neural Information Processing
Systems, volume 30, 2017.

Petar Velivcković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2018.

Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, Dongrui Fan,
Shirui Pan, and Yuan Xie. Survey on graph neural network acceleration:

C. Chen (CIGIT) Accelerating GCN 26 / 26

An algorithmic perspective. In Proceedings of the 31th International
Joint Conference on Artificial Intelligence (IJCAI 2022), pages
5521–5529, 2022.

Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and
Eduard Alarcón. Computing graph neural networks: A survey from
algorithms to accelerators. ACM Comput. Surv., 54(9):191:1–191:38,
2022.

Jason Yik, Sanmukh R. Kuppannagari, Hanqing Zeng, and Viktor K.
Prasanna. Input feature pruning for accelerating GNN inference on
heterogeneous platforms. In 2022 IEEE 29th International Conference
on High Performance Computing, Data, and Analytics (HiPC), pages
282–291, 2022.

Dalong Zhang, Xianzheng Song, Zhiyang Hu, Yang Li, Miao Tao, Binbin
Hu, Lin Wang, Zhiqiang Zhang, and Jun Zhou. InferTurbo: A scalable
system for boosting full-graph inference of graph neural network over
huge graphs. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE), pages 3235–3247, 2023a.

Qiaoyu Tan, Daochen Zha, Ninghao Liu, Soo-Hyun Choi, Li Li, Rui Chen,
and Xia Hu. Double wins: Boosting accuracy and efficiency of graph

C. Chen (CIGIT) Accelerating GCN 26 / 26

neural networks by reliable knowledge distillation. In 2023 IEEE
International Conference on Data Mining (ICDM), pages 1343–1348,
2023.

Peiqi Yin, Xiao Yan, Jinjing Zhou, Qiang Fu, Zhenkun Cai, James Cheng,
Bo Tang, and Minjie Wang. DGI: An easy and efficient framework for
GNN model evaluation. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages
5439–5450, 2023.

Bingyi Zhang, Hanqing Zeng, and Viktor K. Prasanna. GraphAGILE: An
FPGA-based overlay accelerator for low-latency GNN inference. IEEE
Transactions on Parallel and Distributed Systems, 34(9):2580–2597,
2023b.

Hanwen Dai and Changbo Chen. Accelerating batched matrix
multiplication for variable small sizes based on TVM (in chinese).
Accepted, 2024.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. TVM: An automated
end-to-end optimizing compiler for deep learning. In 13th USENIX

C. Chen (CIGIT) Accelerating GCN 26 / 26

Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578–594, 2018.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra
Mutzel, and Marion Neumann. TUDataset: A collection of benchmark
datasets for learning with graphs. arXiv preprint arXiv:2007.08663, 2020.

C. Chen (CIGIT) Accelerating GCN 26 / 26

	Background
	Main contribution
	Experiments
	Conclusion and future work
	References

