/®/)
oM
our technology partner
F 1 D E S

Extending a scientific workflow
engine with streaming I/O
capabilities: DAGonStar and
CAPIO

T "agOn CAPIO

Directed Acyclic Graph on Cross-Application
Programmable 1/0

Simone Perrotta, Ciro Giuseppe De Vita, Gennaro Mellone, Marco Edoardo Santimaria,
Giuseppe Salvi, Marco Lapegna, Massimo Torquati, Angelo Ciaramella

Introduction

1.1 Introducing data-intensive workflows

Data-intensive workflows:

e Involves complex sequences of computational tasks;

e Requires resilient systems for effective data flow and processing.
Challenges with Traditional Workflow Engines:

e Significant limitations with real-time data streams;

e Struggles with in-memory data management;

e Increasing data complexity and scale exacerbate these issues.

Workflow

- Input
|

Computer
program
\ ' Output

Each node represents a computer
i program with its corresponding
Parallel tasks Q Q Q 6 Q input and output data files

Sequential tasks ;

Introducing WFEs and DAGonStar

Workflow Engines (WFEs):

e Designed to manage complex scientific workflows;
e Example: DAGonStar.

Functionality:

e Use directed acyclic graphs (DAGs) to ensure correct data flow;
e Enable parallel task execution.

Limitations:

Performance can be limited by reliance on traditional disk-based storage.

Introducing CAPIO

CAPIO:

e Innovative in-memory file storage system.

Purpose:
1343
e Overcomes limitations of disk-based storage in high-performance computing.

Benefits: c AP I 0

° Faster data access: Cross Application Programmable 170
e Reduced latency crucial for real-time processing.

Architecture:

e Supports concurrent access;
e Facilitates parallel processing;
Ideal for managing high-speed data streams in modern scientific workflows.

Why integrate DAGonStar with CAPIO?

e Workflow Description: DAGonStar uses the workflow://schema to describe workflows as
dataflows. This means that by analyzing the data flow processed and managed by the various
tasks, we can perform I/O overlap to save a significant percentage of the total execution time.

. File read . File write I File close
file-1.dat, ..., file-k.dat
- > Q Time EI Wait for file close Il:l Computation

—

(wB) (rB)

< S > Q

Y

Normal batch execution without I/O overlap

-
_—

Timeline of integration

Current State: DAGonStar with workflow://schema, no 1/O overlap.

Integration Goal: Combine DAGonStar's robust workflow description with CAPIO's efficient
streaming I/O.

e Expected Outcome: Achieve simultaneous computation and I/O for improved performance and

efficiency.

Without CAPIO (i.e., batch execution of S and Q)

‘ a < S > Q

file-1.dat, ...,

-
>

Time—>»
write B(anB(;width read B(ag()iwidth With CAPIO (i.e., co-execution of S and Q) . File read . File write I File close
wi i
— B Wait for file close I[] Computation

close SCs)\ ST total

¥ M ~
S RN 1145158 sodtn

Our objective

Integration of CAPIO with DAGonStar:
e Creates a hybrid system.
Combination:

e Efficient task orchestration (DAGonStar);
e High-speed, low-latency data handling (CAPIO).

Paper Details:

e Design and implementation;
e Highlighting how CAPIO's streaming I/O capabilities enhance DAGonStar’s
performance.

Primary Objective:

e Demonstrate significant performance improvement;
e Particularly for real-time data processing in scientific workflows.

ag0n

Cross Application Programmable 170

[CAPIo

DAGonStar’s architecture

Engine Task Flow / Data Flow Executors
. Application
| ,))))
. . Native loT s
Prlh(:lpal components: ‘:5 % =
° Ru ntime; Web (@) @ g _g loT Resources
. Service; o % -
° Workflow:// Schema; . 5 g
. a: alc ald >
. Garbage collector; = §
° Stager §- On-Prem Resources
ger, Cloud Sle
== Cloud
X 8 Resources
Container
workflow:// Schema Garbage Collector Stager -
Containerized
REST API Resources

Design and architecture

Monitoring & Management

CAPIO’s architecture

CAPIO
_y]| config-file

10-Graph (Data dep

streams

RS
output input

streams

AppP, AppQ)

@ " x

12pop uoneuip1009 o/l |

Shared Memory

CAPIO Server

CAPIO Server
(user-space)

(user-space)

Conceptual software architecture

open,read,write,Iseek.fcntl, ...

awpuny

App P App Q App P App W
processes/threads processes/threads CAPIO processes/threads processes/threads
O O O O O config-file
(JSON)
-
-
P's concurrent ’ahared Q's concurrent P's concurrent 32;’:(’ Ws concurrent
circular buffers emory | circular buffers circular buffers x Y| circular buffers
CAPIO Server —d CAPIO Server
Metadata Cache mPi Y oo mg) MPI [Metadata Cache]
o e »
L —
cluster node B Distributed fle system cluster node

home-node IH_<—

CAPIO deployment example on two cluster nodes

The CAPIO server, which will run on each node belonging to the cluster. A JSON
configuration file must be passed to this during execution, which indicates how and where
the streaming must be carried out, and will generally be produced by users or software;

The CAPIO system call intercept library, a library that allows the CAPIO server to stream by

intercepting essential posix calls regarding file management.

Our architecture

“““ DAGonStar

generate the JSON file based
| e on the dependencies
| between tasks, identified

batch tasks

Shared Memory
CAPIO SCs thanks to the workflow://

Intercept Library Schema;
open(), read(), write(), ... ’

Native

Web

|
|
|
|
|
|
|
|
|
|
|
|
|
i ° This JSON file is used by the
! Cloud CAPIO server for
| . -
! Container X configuration,
| |
} V;c(:;rmlzo'\\;lvxl Garbage collector Stager i : | l ° TaSkS A and B make Up a
i ... Mon/tormg& ii [AppA H AppB H Appc] plpellne In WhICh A produces
} RESTAPI Management | : Output Input files and B reads them;
1 ¥ sreems sreems Posix calls made on these
[)
! Web GUI Admin Web GUI l
| K Cluster Node output files will be
| .
1 U intercepted by the CAPIO
| DAGonStar Architecture Ll CAPIO Software Architecture [
|

. server, allowing it to process

__

this data in RAM.

Case studies

Introducing the pipeline
The presented case studies all focus on the use of a pipeline, which includes:

Producer A: which generates numbers by inserting them into files;
Consumer B: which reads these files, sums all the numbers within each file, calculates the
average, and saves it in another file.

e Inourscenario, there is also another component of the pipeline, C: which opens all the files
produced by B, and computes the average of all the individual averages.

sums and then
calculates the average
of all the numbers in

each file I

produces the
numbers for each file

)

do the
average of
all the
averages
produced
by B

Pipeline implementation

The implementation of the pipeline was carried out following these steps:
e Implementation of the pipeline composed of two C programs, namely A and B in CAPIO;
e Identify the points in DAGonStar to modify for integration purposes and apply these
improvements;
e Create two tasks that make up the pipeline in DAGonStar plus another task that saves the results
permanently;
e Run the pipeline workflow and collect timing results for comparison.

Producer

. Consumer |

Experimented pipelines

10 files with 1T million numbers per file;
10 files with 2 million numbers per file;
20 files with 1T million numbers per file;
20 files with 2 million numbers per file;
30 files with 1 million numbers per file;
30 files with 2 million numbers per file;
40 files with 1 million numbers per filg;

40 files with 2 million numbers per file.

rand(0,1)
rand,(0,1)

rand,;,,(0,1)

Program A

There were various types of pipelines tested, but they all have in common the type of numbers within the
files, as they are all between 0 and 1 with a decimal precision of 6 digits. The specific types of pipelines
experimented with are as follows:

random1.txt output1.txt

random?2.txt output2.txt

random20.txt output20.txt

Program B

Overall
I Arithmetic Mean

Program C

Execution time (s)

Evaluation and results

We tested the pipeline in two scenarios:

DAGonStar running bash scripts sequentially;
DAGonStar with CAPIO integration.

15.00

10,00

Execution times were recorded from the start of Program A to the end of Program C to compare
performance gains.

W DAGonStar W DAGonStar CAPIO W DAGonStar W DAGonStar CAPIO

10 files

4000

30,00

e (s)

cution tim

‘&

Ex

20files 20files 40 files 10 files 20files 20 files

2 Million Random Numbers

1 Million Random Numbers

40 files

Conclusions

This work was carried out according to the following points:

° Exploration: Examined workflows, WMS, and DAGonStar;
e Study: Analyzed CAPIO middleware;
e Integration: Integrated CAPIO into DAGonStar.

agOn CAPIO

Directed Acyclic Graph on Cross-Application
Programmable 1/0

The results of this work have shown that:

Execution times were reduced by 20% to 32%;
There are significant benefits of using RAM-based file systems in Workflow Management
Systems.

= DAGonStar M DAGonStar C APIC ™ DAGonStar M DAGonStar CAPIO

i

2
e Intercopt Libary =
open(), read(), wrt() Py 2183
config-file 2

s E 14.7: 14,33) 507
g 11,83 15520
= 077

ﬁ 8 770
[1004
(e) e |
o e 10 files, 20 files 30 files 40 files : 10 files 20files 30 files A0 files
Web Ul ‘Admin Web GUI
1 Million Random Numbers 2 Million Random Numbers

DAGonStar Architecture CAPIO Software Architecture

