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Introduction

1.1 Introducing data-intensive workflows

Data-intensive workflows:

e Involves complex sequences of computational tasks;

e Requires resilient systems for effective data flow and processing.
Challenges with Traditional Workflow Engines:

e Significant limitations with real-time data streams;

e Struggles with in-memory data management;

e Increasing data complexity and scale exacerbate these issues.
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Introducing WFEs and DAGonStar

Workflow Engines (WFEs):

e Designed to manage complex scientific workflows;
e Example: DAGonStar.

Functionality:

e Use directed acyclic graphs (DAGs) to ensure correct data flow;
e Enable parallel task execution.

Limitations:

Performance can be limited by reliance on traditional disk-based storage.




Introducing CAPIO

CAPIO:

e Innovative in-memory file storage system.

Purpose:
1343
e Overcomes limitations of disk-based storage in high-performance computing.

Benefits: c AP I 0

° Faster data access: Cross Application Programmable 170
e Reduced latency crucial for real-time processing.

Architecture:

e Supports concurrent access;
e Facilitates parallel processing;
Ideal for managing high-speed data streams in modern scientific workflows.




Why integrate DAGonStar with CAPIO?

e  Workflow Description: DAGonStar uses the workflow://schema to describe workflows as
dataflows. This means that by analyzing the data flow processed and managed by the various
tasks, we can perform I/O overlap to save a significant percentage of the total execution time.
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Timeline of integration

Current State: DAGonStar with workflow://schema, no 1/O overlap.

Integration Goal: Combine DAGonStar's robust workflow description with CAPIO's efficient
streaming I/O.

e Expected Outcome: Achieve simultaneous computation and I/O for improved performance and

efficiency.
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Our objective

Integration of CAPIO with DAGonStar:
e Creates a hybrid system.
Combination:

e Efficient task orchestration (DAGonStar);
e High-speed, low-latency data handling (CAPIO).

Paper Details:

e Design and implementation;
e Highlighting how CAPIO's streaming I/O capabilities enhance DAGonStar’s
performance.

Primary Objective:

e Demonstrate significant performance improvement;
e Particularly for real-time data processing in scientific workflows.
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DAGonStar’s architecture

Engine Task Flow / Data Flow Executors
. Application
| ,))))
. . Native loT s
Prlh(:lpal components: ‘:5 % =
° Ru ntime; Web (@) @ g _g loT Resources
. Service; o % -
° Workflow:// Schema; . 5 g
. a: alc ald >
. Garbage collector; = §
° Stager §- On-Prem Resources
ger, Cloud Sle
== Cloud
X 8 Resources
Container
workflow:// Schema Garbage Collector Stager -
Containerized
REST API Resources

Design and architecture

Monitoring & Management




CAPIO’s architecture
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The CAPIO server, which will run on each node belonging to the cluster. A JSON
configuration file must be passed to this during execution, which indicates how and where
the streaming must be carried out, and will generally be produced by users or software;

The CAPIO system call intercept library, a library that allows the CAPIO server to stream by

intercepting essential posix calls regarding file management.




Our architecture
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Case studies

Introducing the pipeline
The presented case studies all focus on the use of a pipeline, which includes:

Producer A: which generates numbers by inserting them into files;
Consumer B: which reads these files, sums all the numbers within each file, calculates the
average, and saves it in another file.

e Inourscenario, there is also another component of the pipeline, C: which opens all the files
produced by B, and computes the average of all the individual averages.
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Pipeline implementation

The implementation of the pipeline was carried out following these steps:
e Implementation of the pipeline composed of two C programs, namely A and B in CAPIO;
e Identify the points in DAGonStar to modify for integration purposes and apply these
improvements;
e Create two tasks that make up the pipeline in DAGonStar plus another task that saves the results
permanently;
e Run the pipeline workflow and collect timing results for comparison.
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Experimented pipelines

10 files with 1T million numbers per file;
10 files with 2 million numbers per file;
20 files with 1T million numbers per file;
20 files with 2 million numbers per file;
30 files with 1 million numbers per file;
30 files with 2 million numbers per file;
40 files with 1 million numbers per filg;

40 files with 2 million numbers per file.

rand(0,1)
rand,(0,1)

rand,;,,(0,1)

Program A

There were various types of pipelines tested, but they all have in common the type of numbers within the
files, as they are all between 0 and 1 with a decimal precision of 6 digits. The specific types of pipelines
experimented with are as follows:

random1.txt output1.txt

random?2.txt output2.txt

random20.txt output20.txt

Program B
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Execution time (s)

Evaluation and results

We tested the pipeline in two scenarios:

DAGonStar running bash scripts sequentially;
DAGonStar with CAPIO integration.
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Execution times were recorded from the start of Program A to the end of Program C to compare
performance gains.
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Conclusions

This work was carried out according to the following points:

° Exploration: Examined workflows, WMS, and DAGonStar;
e Study: Analyzed CAPIO middleware;
e Integration: Integrated CAPIO into DAGonStar.
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The results of this work have shown that:

Execution times were reduced by 20% to 32%;
There are significant benefits of using RAM-based file systems in Workflow Management
Systems.
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