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Concepts. Motivation

e Intensity modulated radiation therapy (IMRT) is an
effective cancer treatment that involves delivering doses

of radiation to a tumour while sparing the surrounding
tissues.

INTENSITY MODULATED RADIOTHERAPY (IMRT)
WHAT ARE THE BENEFITS?

IMRT is a form of high precision SALIVARY GLAND
radiotherapy that can deliver PROTECTED
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Concepts. Motivation

e Physicists in each planning must solve a complex
optimization problem, in which the optimal adjustment of
the intensity of all radiation beams is sought, in order to
maximize the dose in the tumor areas (PTV) and decrease it

in the organs at risk (OAR).
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Background. Present problem

e To solve this, they have to deal with the following workflow:
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EUD Model (Equivalent Uniform Dose)

e Clinically meaningful RT plans can be obtained by computing the
maximum of the following function:

F(z,9) = Ilier 1+( E;D? )nt Mer 1+( 1 )m

EUD¢(z,a¢) EUDY
| J \ J
| |
Tumors Organs at Risk

EUD? is the prescribed dose for t-th PTV,
EUDy is the maximum uniform dose at r-th OAR;

n, and n; express the importance of the prescriptions for the corresponding
structure;

¢

¢ represents the set of parameters involved in the F definition, i.e. ¢ is an instance
of parameters n;, n,, a,, a,, and EUD? witht € T, r € R.
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EUD Model

& In EUD, radiation effects in a Planning Target Volumes (PTV) or an
Organ At Risk (OAR), both referred as structure s, are evaluated by
the following function that aggregates these effects over all voxels

belonging to structure s:

EUD,(z,as) = Z d;
JEM
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PerseUD

e We have an application of the EUD-based gradient descent
technique capable of generating clinically acceptable plans.

PerseUD
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What do the solutions really represent? SIONIE
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The solutions are of high quality
but we want to get them faster!!!
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Process acceleration

e How can operations be accelerated?

1 2 """ The Gradient Descent optimizes the
""The Genetic Algorithm "“The Router converts optimizable parameters plan defined by the EUD parameter
generates a new population into EUD sets and allocates the workload set. Each process can simultaneously
and needs to evaluate it. among the available GD platforms. optimize as many plans as necessary.
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Process acceleration

e How can operations be accelerated?

e The individuals
L b L2 - generated by the
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Process acceleration

e How can operations be accelerated?

e The batch is received
by the DG. A
matrix-matrix product

. . — - © The Gradient Descent optimizes the
( B LAS Ievel 3) IS optimizable parameters plan defined by the EU!) parameter
ocates the workload set. Ea_ch process can simultaneously
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Parameter Patient A Patient B Patient C
Beam angles 9 9 9
Beamlets (V) 25,298 33,911 30,265
Voxels (M) 145,965 160,786 94,647
D nonzeros 67,544,881 106,792,251 64,991,188
Organs At Risk (OARs) 9 9 9
Planning Target Volumes (PTVs) 3 2 3
PTVy pr. dose (Gy) 54.0 59.4 54.0
PTV; pr. dose (Gy) 60.0 66.0 60.0
PTV; pr. dose (Gy) 67.5 - 66.0

Note the size of D
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Computational experiments

Two types of experiments have been carried out:
e Influence of batch size in sequential.

e Performance analysis of parallel versions on the following

platforms:
Platform CPU Cores RAM
Sandy Intel Xeon E5-2650 16 (2 sockets) 64 GB DDR3
EPYC AMD EPYC 7642 96 (2 sockets) 512 GB DDR4
Ryzen AMD Ryzen 9 5950X 16 (1 socket) 32 GB DDR4
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Influence of lot size on sequential

I Sandy
s EPYC
Il Ryzen
Standard deviation

w
(0,1
o

w
o
o

250

200

150

100

wu
o

Sequential time per gradient descent step (milliseconds)
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Batch size (q)

Average time of the 3 patients for each platform and different batch
size. There is a considerable reduction in run time when applying a
batch size 2, but thereafter the improvement is practically O.

Total time = t*2000*pop*iter/1000/3600/24
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Time per gradient descent step (milliseconds)

Results. Sandy Platform

Intel Xeon E5-2650
16 cores (2 sockets)

64GB DDR3
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The time given is the time of one step of the gradient. This value has to be multiplied
by 2000 iterations of the DG times the number of individuals and the number of
iterations of the genetic.
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Time per gradient descent step (milliseconds)

Results. EPYC Platform

AMD EPYC 7642
96 cores (2 sockets)

512GB DDR4
Execution time per batch size and
threads Speedup
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The time given is the time of one step of the gradient. This value has to be multiplied
by 2000 iterations of the DG times the number of individuals and the number of

iterations of the genetic.
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Time per gradient descent step (milliseconds)

Results. Ryzen Platform

AMD Ryzen 9 5950X
16 cores (1 sockets)
32GB DDR4

Execution time per batch size and
threads Speedup
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The time given is the time of one step of the gradient. This value has to be multiplied
by 2000 iterations of the DG times the number of individuals and the number of
iterations of the genetic.
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Conclusions

® In this paper we have presented a new design that allows PerseUD
to be accelerated using two approaches:

® Parallelisation using batches.
® Parallelisation using threads.

® We have tested our method on three different platforms with
different architectures and we have evaluated its performance with
different batch sizes and threads.

® The results show that the execution time is considerably reduced,
making it feasible to use in real environments.

® Ex: 128 individuals, 50 iterations and 2000 DG steps.
® Total time =t*2000*pop*iter/1000/3600/24
® Sequential without batches: 422.51 hours

® Parallel version with 96 threads and 64 individuals per batch: 12.55

hours.
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